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Effects of Waveguide Wall Grooves Used
to Hold Samples for Measurement
of Permittivity and Permeability

Raymond Luebbers, Senior Member, IEEE

Abstract— The complex permittivity and permeability of a
material may be measured at microwave frequencies by placing
a sample of the material in a waveguide and measuring the
complex reflection and transmission coefficients. Whereas there
are various approaches to holding the sample in place, for a thin
rigid sample shallow grooves may be cut in the waveguide walls
for thk purpose. However, such grooves will be a source of error
since higher order modes can be excited. In this paper the modal
analysis method is used to illustrate the potential for error in
measuring constitutive parameters of the sample introduced by

the grooves,

I. INTRODUCTION

T HE complex permittivity and permeability of a material at
microwave frequencies may be determined by placing a

sample in a waveguide and measuring the complex reflection
and transmission coefficients. If the sample exactly fits the
waveguide cross section and has planar ends perpendicu-
lar to the waveguide axis, the necessary calculations are

straightforward applications of transmission line methods,

since (assuming single mode propagation in the air-filled sec-

tion of waveguide) only a single mode propagates throughout

the measurement volume. Even if the constitutive parameters
of the material are large enough so that higher order modes
may propagate within the material sample, they will not be
excited.

In reality such a situation as described here will not exist
exactly. One source of error is air gaps, where the material
sample does not exactly fit the waveguide walls. This error
source has been investigated in [1] using the modal analysis
method of Wexler [2]. In [1] the conclusion was that errors
due to small air gaps could essentially be eliminated by using

a conducting paste to fill the gaps.
A more difficult error source to remove is encountered

when a thin material sample, much thinner than the transverse
dimensions of the waveguide, must be held in the waveguide.
This situation occurs when measuring the complex permittivity
and permeability for very thin, anisotropic material samples at

low frequencies. The anisotropy prevents the use of coaxial
measurement fixtures, and free space measurements may not
have sufficient accuracy. Since very large waveguides must
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Waveguide with material sample in the groove.

sample thicknesses are only a small fraction
of the waveguide _transverse dimensions, and typical sample
holders cannot reliably hold the samples perpendicular to the
waveguide axis.

One approach to holding thin rigid slabs of material per-
pendicular to the measurement waveguide axis is to cut a

small groove in the waveguide walls the same thickness as

the sample and just deep enough to hold it in place, as in
Fig. 1. In reality, this groove would be part of a waveguide
mechanical junction, but for analysis purposes we can neglect
this complication.

The sample is in region b and is of thickness 1, The sample
is assumed to fill exactly the dimensions of waveguide b,
which is larger than waveguide a. Not shown in Fig. 1 are the
locations of the waveguide probes used to sample the reflected
and transmitted fields to determine the complex reflection and

transmission coefficients and thus the complex constitutive
parameters of the sample.

The inclusion of the waveguide groove (which forms wave-
guide b) to hold the sample introduces errors in the mea-
surements. These errors are due to the excitation of higher
order modes in the sample material and in the external “a”
waveguides. These higher order modes have several unwanted
effects. First, the determination of the complex constitutive
parameters of the material assumes single mode propagation
through the waveguide system. If higher order modes can
propagate in waveguide section b, they may now be excited by
the grooves at the intersection of waveguides a and b. Second,
the reflection and transmission coefficients will be changed due
to the presence of fringing fields at the waveguide junctions.

To provide a means of determining the error introduced
in the measurement due to the presence of the groove, a
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modal analysis [2] of the sample holding geometry has been
performed. The details of the method are contained in [2] and
[3], and are summarized in later sections of this paper. The
convergence of the modal solution as the number of modes in

each waveguide section is increased is also demonstrated.
Once the modal coefficients are determined, the fields at

any location in the waveguide system can then be found. The
modal analysis is completely general in that the waveguide
dimensions UJ, u, t, h, the sample thickness 1, the complex
constitutive parameters of the sample, and the locations where
the reflected and transmitted fields are sampled, may be
specified arbitrarily. The sample may be anisotropic provided
that the tensors are diagonal and with the x and z components

of both tensors equal to each other. In addition, to simplify
the required modal integrations, it has been assumed that

waveguides a and b have a common symmetry axis.

II. MODAL ANALYSIS

The following presentation of the modal analysis used in this
effort is taken from Wexler [2]. For the present we neglect the
effects of the probes that feed the waveguide and sample the
reflected and transmitted signals. We also assume that both
sections of waveguide a are matched.

To excite the sample, consider a mode i = 1 emanating

from an ideal matched source in waveguide a and imping-
ing on waveguide b containing the sample at z = O. The
coefficient of this mode is al, those for the backscattered
modes are a2, a3, . . .. at...., and pal as well, where p is
the reflection coefficient. Taking ~ to be the total transverse
electric-field vector within the aperture at the discontinuity, the
field expanded in terms of modes just to the left of junction
1(.z=O)is

m

E = (1 + p)als?%l + ~aiZai . (1)

%=2

Subscript a denotes quantities relative to waveguide a. Simi-
larly, the total magnetic field may be expressed by

(2)

Referring again to Fig. 1, we express the aperture fields at
z = O in terms of modes in b. Each transmitted evanescent

or propagating mode j reaching junction 2 (z = -4) partially
reflects and scatters power into other modes k, some of which
return to junction 1. These are accounted for by the scattering
coefficients Sjk. The total transverse electric and magnetic
fields just to the right of junction 1 are given by

and

(3)

(4)

Poundary conditions to be satisfied at the discontinuity are
as follows: transverse electric and magnetic fields must be

continuous across the aperture, and the electric field tangential
to the conducting walls must vanish. Following the procedure

of Wexler, the following equations result:
For m # 1,

/

—— —— ‘EaI X hbn . ZiZds . (5)
a

For m = 1,

P
/

~al X ~al . G. ds
a

U, —
al

(7)

where n=l,2, .,, , iV. Equations (5) and (6) form a system
of N + 1 equations in IV+ 1 unknowns, b. and p. Equation (7)
gives ai in terms of bj once they are determined by solution
of (5) and (6).

To solve (5)–(7) the scattering matrix Sjk maybe evaluated

using symmetric and antisymmetric excitation since the sample
is symmetric about the z = 4/2 plane. Symmetric excitation
of the groove is obtained by having two incident fields in
waveguide a, one traveling in the +Z direction and the other
in the – z direction, such that the E fields are in phase in the
z = 1/2 plane; antisymmetric excitation is obtained if these
fields are 180° out of phase. Under these conditions, Sjk = O

for j # k, and

SJj = +e-rJ1 . (8)

The plus and minus signs in (8) correspond to symmetric
and antisymmetric excitation, respectively. To determine the
reflection coefficient, or any other modal coefficient on the
reflection (incident) side of the sample add the results for
symmetric and antisymmetric excitation. The transmission
coefficient and all modal coefficients on the transmission side
are obtained by subtraction of the corresponding antisymmetric
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result from the symmetric result. For example, if we let p, be

the reflection coefficient obtained by solving (5) and (6) for

symmetric excitation, and p. for antisymmetric, then for the
actual excitation of a single incident mode

and

(9)

(lo)

III. WAVEGUIDE MODES

We now need to define a set of modes to expand the
waveguide fields. A suitable set of modes can be found from
those given in [3] for the similar problem of a waveguide
boundary reduction. The modes in waveguides a are

Fai z liz sin

(

p7r(2y – t + w)

)(

~os q7r(2x – h + v)

2W 2V )
(11)

and

%.%= GYy.~ sin
(

p?r(2y – t + w)

)(

Cos
qfl(zx – h + V)

2W 2V )

( )(. ~os p7r(2y – t + W) sin q7r(2x – h + ‘u)

2W )2V ‘

(12)

where UZ and UYare unit vectors, p and q are the conventional
mode numbers, and yai is the wave admittance of the ith mode
given by

In region b, the transverse components of the modes are

complicated somewhat by allowing for limited anisotropic
characteristics, If the tensors are diagonal, with CZ = CZ and

P. = P., we have

“j ‘-(%’(?) (14)

and

‘b~“~y’~sin(?)cos(?)_Uz m rs7r2
‘– Cos(?)sin(%’l‘1’)W/Lzrj th

where r and s are the mode numbers, and ‘Ybj is given by

(16)

where rj is the propagation constant for mode j in guide b
and is given by

Convergence Test
PMAX=9, QMAX=8

E
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Fig. 2. Effect of the number of modes used to describe the fields in
waveguide b on the computed value of the reflection coefficient.

The modes in guide b are TE to y. Modes are numbered

consecutively, that is, i = 1,2,3, ..., and j = 1,2,3 ..., where

each value of i corresponds to particular values for p and q,
etc. Due to symmetry, not all modes are excited; p and r are
always odd, and q and .s are even (or O) for this geometry and
for an incident TEIO mode in guide a.

The integrations needed to evaluate the terms in (5)–(7) are
fairly straightforward for this problem, and are given in [3].

IV. CONVERGENCEOF THE MODAL ANALYSIS

When using the modal analysis method, care must be taken
in choosing the number of modes used to expand the fields in

the two different waveguide regions. This has been discussed
in the literature [4], [5], with the basic rule being that more
modes are required in the larger waveguide than in the smaller.

To illustrate the convergence phenomenon for this geometry,
results for the magnitude of the reflection coefficient as a
function of the number of modes used are presented in Fig. 2
and 3. The relative complex permittivity of the sample was
27.0 – j4.0, and relative complex permeability was 5.2 –

jO.8. The dimensions of waveguide a were held constant at
VJ = 45.7 cm and ~ = 22.9 cm. These dimensions result in

a dominant mode cutoff frequency of 328 MHz. Waveguide
b has dimensions t = 47.6 cm and h = 24.8 cm for a
groove depth of 0.95 cm. All calculations are at 500 MHz,
approximately in the middle of the waveguide single mode
frequency band. The sample thickness 1 is 2.54 cm.

To facilitate plotting the results, we introduce the variables
PMAX, QMAX, RMAX, and SMAX. These are the maximum
values of p, q, r, and .s, the modal numbers in the a (p, q) and
b (r,s) waveguides, respectively. These are defined by the
modes sets given previously.

For the first convergence results, shown in Fig. 2, PMAX
and QMAX were held at 9 and 8, respectively, whereas RMAX
and SMAX were increased simultaneously. This figure clearly
illustrates the phenomenon known as “relative convergence”
[5]. The unwary practitioner may perform a convergence test
by increasing the number of modes in waveguide b, observe
a small change in the reflection coefficient as the maximum
mode coefficients PMAX and QMAX are being increased, and
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Convergence Test
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Fig. 3. Effect of varying the number of modes used to expand the waveguide
fields. The maximum value of the modal coefficients in b is kept equal to and
twice that of a.
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Fig. 4. Electric field across the waveguide junction at z = 1 computed with
equal maximum modal coefficients in the two waveguides.

stop at RMAX = 9, SMAX = 8, never (or more likely too
late) realizing that the method has not converged to a correct
value. The reasons for this are explained in [4] and [5], and we
observe a rapid convergence to a stable reflection coefficient
value once RMAX and SMAX are allowed to exceed PMAX
and QMAX

For a different look at the convergence phenomenon, con-
sider the results in Fig. 3 where the maximum modal coef-
ficients in waveguide a are increased, and the corresponding
maximums in waveguide b are increased simultaneously, being

either kept equal to or twice the number as in waveguide a.
Looking at Fig. 3 one would not conclude that the results
with RMAX and SMAX at twice their corresponding values
in waveguide a are more accurate.

To form a conclusion, let us consider examining the accu-
racy of the field match at the waveguide junctions for two
cases, one with PMAX = RMAX = 9 and QMAX = SMAX

= 8, and the other with PMAX = 9 and QMAX = 8 but with
RMAX = 19 and SMAX = 18. These results, in Figs, 4–7,

clearly show the improved accuracy in the field match with
the greater number of modes in the larger waveguide.

Figs. 4 and 5 show that without an adequate number of
modes in the larger waveguide the magnetic fields in the aper-
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Magnetic field across the waveguide junction at: = 1?computed with
equal maximum modal coefficients in the two waveguides.
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Electric field across the waveguide junction at z = 4 computed with
the maximum modal coefficients in waveguide b twice those in waveguide a.
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Fig. 7. Magnetic field across the waveguide junction at z = 1 computed with
the maximum modal coefficients in waveguide b twice those in waveguide a.

ture plane match exactly, since they are determined entirely by
the incident mode field, but the electric fields are a very poor
match. Figs. 6 and 7 show the fields at the discontinuity with

the maximum modal coefficients in waveguide b twice those
in a. Once the number of modes in waveguide b is increased,

the magnetic field match is not quite as good as before, since
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the magnetic fields in waveguide b are no longer determined

entirely by the incident field but are attempting to match the
surface current on the conducting wall, but the electric field

match is now greatly improved. A more detailed discussion of
this phenomenon is given in [4].

V. DETERMINING THE SAMPLE CONSTITUTIVE PARAMETERS

The modal analysis method allows us to calculate the elec-
tromagnetic fields at any point inside the waveguide region,
However, the goal is to assess the effects of the waveguide

groove and sample probe locations on the accuracy of the
measurement of the constitutive parameters of the sample
material in waveguide b. To do this we must develop a means
to convert our modal analysis field calculations to simulated
measured results of the complex permittivity and permeability
of the sample material.

Our approach is to simulate the measurement process of.
converting measured values of the reflection and transmission

coefficients to the complex permittivity and permeability of the
sample in waveguide b. Using this result, the modal analysis is

used to compute the reflected and transmitted electric fields at
the sample probe locations. Then these simulated reflection
and transmission coefficients, which include the effects of
the wall groove and the resulting higher order modes, are
used to calculate the constitutive parameters of the material
in waveguide b, as would be done if the same reflection and
transmission coefficients had been measured.

To derive a relationship between the (computer-simulated)

measured values of the complex reflection and transmission

coefficients, R and T, and complex p and e, we define ,za

and Z6 as the dominant propagating modal impedances in
waveguides a and b, and 17. and rb as the corresponding prop-
agation constants given earlier. To simplify our calculations,
we assume isotropic sample material. Using transmission line
methods, we find

26 coth(r#/2) = ,za(l + p~)/(1 – P.) (18)

and

.Zbtanh(r#/2) = .2. (1 + p.)/(1 – p.). (19)

Dividing (17) by (18) and solving for r~ we obtain

[( )]l+p. l–p. 1’2
rb . (2//) tanh”l — —

l–pa”l+p.
(20)

from which we can easily obtain 25 from application of (18)
or (19).

Assuming a TEIO mode (p = 1, q = O), with ~b = l/y~,
solving (16) and (17), we find that in waveguide b

p=– LrbZb. (21)
u

Having determined p from (21), we use (17) to find the
complex permittivity e of the sample.

Thus we have derived an approach to determine complex
p and e from modal analysis calculations which can include
effects of wrdl grooves and sample probe location. We use this
in the riext section to predict the errors that might be expected
when using this waveguide geometry to measure p and ~.
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VI. SAMPLE RESULTS

Since the modal analysis implementation is so general,

it would not be reasonable to try to present an exhaustive

study of the errors that might be predicted. To illustrate its

capabilities, a particular geometry and material have been

chosen for demonstration purposes.

The relative complex permittivity of the sample was again

set at 27.0 – j4.0, and relative complex permeability was 5.2

– j0,8, The sample thickness 1 was decreased to 0.635 cm

(1)4 in). The dimensions of waveguide a were held constant

at w = 45.7 cm and v = 22.9 cm. All calculations are at
500 MHz. Note that, for these dimensions, it would be quite
difficult to hold the sample in place using a conventional

sample holder.

For this example, the waveguide groove depth, (t –

w)/2 and (h – v)/2 in Fig. 1, has been varied from O

to 1 cm, whereas the distance from the material faces at

z = O and z = / to the sample probes was held

constant at 20 cm. The electric fields computed at the
center of the waveguide at the probe distances were used
to compute simulated reflection and transmission coeffi-
cients, and the complex constitutive parameters were then
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sample permeability versus groove depth. Actual value is 5.2.
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Fig. 11. Mode matching prediction ofmeasured value of the imaginary part
of the sample permeability versus groove depth. Actual value is –0.8.

determined as described earlier. For these results, PMAX =
9, QMAX=8, RMAX= 19, and SMAX= 18.

Figs. 8–11 show themode matching estimates of the mea-
sured values of the complex constitutive parameters as a
function of the groove depth. As expected, for a groove depth
of zero (w = t and v = h), the measured values agree almost
exactly with those specified. As the groove depth is increased,
the simulated measured values deviate from those specified.

VII. CONCLUSIONS

The preceding results illustrate that the modal analysis

method can be very useful in assessing the potential error,

which may be a result of holding samples in place using

grooved waveguide walls. This capability should be very

useful is designing and evaluating waveguide measurements

of thin samples of lossy materials.
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